Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla.

نویسندگان

  • Seong-Gyu Lee
  • Neil J Vickers
  • Thomas C Baker
چکیده

We used single-sensillum recordings to characterize male Heliothis subflexa antennal olfactory receptor neuron physiology in response to compounds related to their sex pheromone. The recordings were then followed by cobalt staining in order to trace the neurons' axons to their glomerular destinations in the antennal lobe. Receptor neurons responding to the major pheromone component, (Z)-11-hexadecenal, in the first type of sensillum, type-A, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of the type-A sensilla, a colocalized receptor neuron was stained that projected consistently to the posterior complex 1 (PCx1), a specific glomerulus in an 8-glomerulus complex that we call the Posterior Complex (PCx). We found that receptor neurons residing in type-B sensilla and responding to a secondary pheromone component, (Z)-9-hexadecenal, send their axons to the dorsal medial glomerulus of the MGC. As in the type-A sensilla, we found a cocompartmentalized neuron within type-B sensilla that sends its axon to a different glomerulus of the PCx4. One neuron in type-C sensilla tuned to a third pheromone component, (Z)-11-hexadecenol, and a colocalized neuron responding to (Z)-11-hexadecenyl acetate projected their axons to the anteromedial and ventromedial glomeruli of the MGC, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a GABAB - Receptor in Olfactory Sensory Neurons of Sensilla trichodea on the Male Antenna of the Moth Heliothis virescens

In the olfactory pathway of Drosophila, a GABAB receptor mediated presynaptic gain control mechanism at the first synapse between olfactory sensory neurons (OSNs) and projection neurons has been suggested to play a critical role in setting the sensitivity and detection range of the sensory system. To approach the question if such a mechanism may be realized in the pheromone recognition system o...

متن کامل

Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti

Mosquitoes are highly dependent on their olfactory system for, e.g. host location and identification of nectar-feeding and oviposition sites. Odours are detected by olfactory receptor neurons (ORNs) housed in hair-shaped structures, sensilla, on the antennae and maxillary palps. In order to unravel the function of the olfactory system in the yellow fever vector, Aedes aegypti, we performed sing...

متن کامل

Receptors and Neurons for Fly Odors in Drosophila

Remarkably little is known about the molecular and cellular basis of mate recognition in Drosophila[1]. We systematically examined the trichoid sensilla, one of the three major types of sensilla that house olfactory receptor neurons (ORNs) on the Drosophila antenna, by electrophysiological analysis. We find that none respond strongly to food odors but that all respond to fly odors. Two subtypes...

متن کامل

Re-Classification of Drosophila melanogaster Trichoid and Intermediate Sensilla Using Fluorescence-Guided Single Sensillum Recording

Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identificati...

متن کامل

A Specific Male Olfactory Sensillum Detects Behaviorally Antagonistic Hairpencil Odorants

Within insect species, olfactory signals play a vital role in communication, particularly in the context of mating. During courtship, males of many moth species release pheromones that function as aphrodisiacs for conspecific females, or repellants to competing conspecific males. The physiology and antennal lobe projections are described of olfactory receptor neurons within an antennal sensillu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical senses

دوره 31 9  شماره 

صفحات  -

تاریخ انتشار 2006